Introduction: Different types of Attacks
Evasion vs. Poisoning
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Poisoning does not
manipulate the target
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Adversarial Examples
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THREAT MODEL: CLEAN-LABEL AT TACKS

WHY POISON? Attacks can be executed by outsider

Poison data can be placed on the web
Poison data can be sent/emailed to data collectors

You can’t always control
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for example. .. Clean-label Performance only
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Transfer learning

Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Nets
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Intro:

Make poisons: collision attack method

Algorithm Poison example generation

» Use pre-trained feature extractor
» Classification layers re-trained
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Poison Is near base In pixel space,

“One-shot kill” possible collides with target in feature space
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How to attack in the end-to-end case?
“One-shot kil attacks do not work here!

[1T°S TOUGH TO FOOL THE
FEATURE EXTRACTORS!
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Feature space visualization of unsuccessful single-shot poisoning attack

Transfer learning
VS

end-to-end
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Problem: feature layers learn to separate poison from target in feature space

Multiple poisons requiread

Watermarking:
overlay the target onto the poison

Makes 1t difficult to separate images! &

FOOLING FEATURE EXTRACTORS REQUIRE:

Using multiple Poisons

transfer
learning

Successful poisoning in end-to-end: sucking out the target

Baseline: Successful poisoning attack Baseline: Successful poisoning attack Baseline: Successtul poisoning attack
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Successful poisoning in end-to-end: 60 poison dogs!
causing a bird to get misclassified
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Success rate depends on # of poisons and opacity of target
success rates of various experiments
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